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REACTION OF A PIEZOCERAMIC SHELL TO CONCENTRATED DYNAMICAL ACTIONS* 

L.A. FIL'SHTINSKII and L.A. KHIZHNYAK 

A solution of the equations of motion of an infinite, cylindrical piezoceramic shell, the 
facial surfaces of which are not covered by electrodes but subjected to a periodic system of 
concentrated forces varying harmonically with time, is constructed. Green's function method 
is used for this purpose. In the case of regular roots of the dispersion equation the unique 
solution is picked out on the basis of limiting absorption principle. The irregular roots 
determine the spectrum of resonance frequencies. An analytical and numerical analysis of the 
roots of the dispersion equation is carried out. A qualitative picture of the wave process 
is given. The results of a calculation of the amplitude-frequency characteristics of the 
displacement and the electric field potential are presented as well as a comparison with a 
non-electric shell. The free vibrations of Fiezoceramic shells are considered in /l, 2/ and 
the forced vibrations of such shells in /3, 41. 

1. Let us consider a cylindrical piezoceramic shell which is referred to the orthogonal 
coordinates a.@ and z, polarized along the 01 coordinate and loaded with a system of con- 
centrated forces which are periodic with respect to fi, and vary harmonically with time. The 
facial surfaces of the shell are free from electrodes and are bounded by a vacuum. When 
account is taken of the equations of state /5/, the equations for the steady-state vibrations 
of such a shell have the form 

.&uf z P& (a. B) t- 6iahO'UJ @.f) 
6, = 6, = -i, 6, = 1, 8, = 0, I, j = i, 2.3, 4 

Here, ~,(a,@ are the amplitudes of the displacements (i= i,2,3), u,= cp(a,@) is the electric 
field potential in the shell, 6(a,& is a two-dimensional Dirac function, o is the frequency, 
p and h are the density of the material and the thickness of the shell and PI is the amplitude 
of the corresponding concentrated force. 

The differential operators L&J are written out in /6/ and the coefficients occurring in 
them have the form 

Here, CfJ 
E are the coefficients of elasticity of the piezoceramic when the electric 

field is zero, %I' and e,,' are the permittivities when the stresses are zero and QJ* are 
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the piezoelectric moduli. 
Apart from the mechanical Kirchhoff-Love hypothesis, it has been assumed when deriving 

Eqs.(l.l) that the electrical boundary conditions on the facial surfaces have the form D,= 

0 (Dz is the corresponding component of the electric induction vector). 
By introducing representations of the displacements in terms of the resolvent functions 

rcll /7/, we arrive at a single tenth-order differential equation 

L (81, %)R (a* B) = 6 (a, B) 
Y; = --PIE (a, p)/(FIR,%+,), a, = a/au, a, = aiap 

The coefficients a~, a/ and F1 are defined in /6/, h=. R,ih, the quantities dl(*) depend 
on the material, the shell parameters and the frequency of the exciting force andareexpressed 
in terms of .at and aj (which are not written out here in view of their complexity) and R, 
is the radius of the median surface of the cylindrical shell. 

We will seek a fundamental solution in the form of a Fourier series in the coordinate f3 
with a subsequent integral Fourier transform with respect to the variable 0~. In accordance 
with this, R(a.b) can be represented as follows: 

The characteristic polynomial 

E (a, p) = i c, (a) 8-6 
k--.x, 

Ck(a)=-+ s exp(iknaa) dr 

_m (kn)’ Ak (V, i) 

of the Fourier transform has the form 

AK (v, I) = f: b$;‘ajzlD-‘di, k=O,fl,&&... 
j=l 

(1.4) 

The coefficients biQ) depend on al, a/ and d,@), the shell parameters and the fre- 
quency parameter y* = p~~R,'lc~,. 

A numerical analysis of the characteristic polynomial (1.4) was carried out in order to 
evaluate the inversion integral. This enabled us to pick out a discrete series of values of 
the frequency parameter y, for which the dispersion equation 81, (V, 2) = 0 has multiple roots 
2. The critical values of the frequency parameter in the case of a shell made of FTZ-5 
piezoceramic when a,=30 and n=l(n is the number of concentrated actions) where: 0.007, 
0.034, 0.082, 0.149, 0.236, 0.34, 0.467, 0.61, 0.733, 0.775, 0.957, 1.06, 1.16, 1.381, 1.41, 
1.465, 1.621, 1.881, 2.16, 2.199, 2.236, 2.458, 2.93, 3.113, 3.16,... . 

The characteristic behaviour of certain roots of the polynomials A0 (v, 2) and AS (V 2) as 
a function of v is shown in Figs.1 and 2. It can be seen that, in the static case .(v = 0) 
all of the roots are complex and, as y increases (y increases in the direction of the arrows 
on the curves), they approach the imaginary axis and appear as two multiple purely imaginary 
roots. These roots subsequently separate and two of them proceed towards one another until a 
multiple zero root appears while two others go in the opposite direction along the imaginary 
axis. The multiple zero root splits into two real roots which move in opposite directions 
along the real axis. Analogous pictures also hold when k=l, 2. When k=3, characteristic 
loops arise, leading to the appearance of just a single pair of multiple purely imaginary 
roots. It can be seen from the analysis that multiple roots of s appear at those values of 
the frequency parameter for which the branches of the roots of the polynomial lie in the 
purely imaginary or real plane. 

The critical values of the frequency parameter divide up the continuous spectrum into 
intervals in which all of the roots s of the characteristic polynomial of the Fourier trans- 
form are simple and for which the inversion (1.3) exists. 

In order to pick out the unique solution in the intervals of continuity it is necessary 
to specify the conditions which characterize the behaviour of the solution at infinity. In 
the given problem we shall make use of the principle of limiting absorption /8/. An analysis 
of the roots of the dispersion Eq.(1.4) with absorption shows that the negative real roots 
correspond to the limit points of a sequence of complex roots located in the third quadrant 
of the complex plane s while the positive roots correspond to the limit points of the sequence 
of roots in the first quadrant (Fig.3).. The integration contour for calculating the functions 
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Ck (4 in (1.3) is selected in accordance with this. Physically, the procedure which has been 
indicated implies the construction of the fundamental solution which ensures the transport of 

energy from the source of the perturbation to infinity (a= _fm). 

Fig.2 

1 I 

0 7 2 
Fig.3 

r 

Fig.4 

Hence, the fundamental solution in the intervals of continuity has the form 

0 

2Re ‘z 
exp [ikn (~$~‘a + b) sgn a] 

v=v.+r 
(ikn)O A,' (y, z$")) ]+Co(a)) 

co (a) = sgn a “1’2”’ I $ exp (izf) 1 a 1 ) PO (z$‘) 

Ao’ (7, $‘) 1 v=1 

Here, zyck) and zVck) are the complex and real roots of the polynomial (1.4), respect- 
ively, and T = Znin. 

In the case of multiple roots the solution does not yield propagating waves since, when 

this is so, the group velocities are equal to zero. These values of the frequency parameter 
may be called resonance values /8/. 

2. The amplitudes of the displacements and the electric field potential in the shell can 

be found in terms of the fundamental solution using well-known relationships /6/. 
We note that the displacements and electric field potential in a shell which are brought 

about by the action of a periodic system of concentrated forces which vary harmonically with 
time represent the superposition of waves of a different kind. The monochromatic waves which 
propagate from the source along a correspond to the real roots of the equation Ak (V, e) = 0, 
while the inhomogeneous waves which decay exponentially along, CL as they become more remote 
from the source correspond to the complex roots. Each pair of complex roots % (k),__ zy(k) 

defines a standing wave along a while each pair of purely imaginary roots defines a standing 
wave along @ with an exponentially decaying amplitude along a. Hence, the band of periods 

04B6T, -co<a<m acts as a waveguide through which energy is transported from the source 

of the perturbation to infinity. 
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The amplitudes of the relative displacements Al,,, (m= 1,2,3) 

I 
and the electric field potential (apart from an arbitrary con- 
stant) from the action of the external concentrated forces 
Ple-'O'(I = i. 2. 3). P, = 0 have the form 

Fig.5 

Gk) = zC)a + f3, Im zhk) > 0, IC) > 0 

Here, Bklm are polynomials with coefficients which depend on the materia 
parameters and also on the frequency parameter y. 

1, the she1 1 

As an example, let us consider the vibrations of a cylindrical shell made of PZT-5piezo- 
ceramic with I= 30 and n=l under the action of forces which are concentrated at the 
point ~q=o,p~-O. 

The amplitude-frequency characteristic of the longitudinal displacement u, (when P,fO, 
P, = P, = 0). calculated using formula (2.1) for a piezoceramic shell (the solid line) and for 
a non-electric shell (the broken line) is shown in Fig.4. The calculations for the non- 
electric shell was carried out using (2.1) with el)= es8 = es, = 0. 

The amplitude-frequency characteristic of the electric field potential p, (under the 
action of Ps) is shown in Fig.5 for the same shell parameters. 
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